Distribution of units of real quadratic number fields
نویسندگان
چکیده
منابع مشابه
Real Quadratic Number Fields
a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...
متن کاملComputation of p-units in ray class fields of real quadratic number fields
Abstract. Let K be a real quadratic field, let p be a prime number which is inert in K and let Kp be the completion of K at p. As part of a Ph.D. thesis, we constructed a certain p-adic invariant u ∈ K× p , and conjectured that u is, in fact, a p-unit in a suitable narrow ray class field of K. In this paper we give numerical evidence in support of that conjecture. Our method of computation is s...
متن کاملElliptic units in ray class fields of real quadratic number fields
Let K be a real quadratic number field. Let p be a prime which is inert in K. We denote the completion of K at the place p by Kp. Let f > 1 be a positive integer coprime to p. In this thesis we give a p-adic construction of special elements u(r, τ) ∈ K× p for special pairs (r, τ) ∈ (Z/fZ)× × Hp where Hp = P(Cp)\P(Qp) is the so called p-adic upper half plane. These pairs (r, τ) can be thought of...
متن کاملElliptic units for real quadratic fields
1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...
متن کاملThe Number of Real Quadratic Fields Having Units of Negative Norm
1991 Mathematics subject classi cation: 11R11, 11D09 We study the density of the set of real quadratic fields for which the norm of the fundamental unit equals 1 inside the set of real quadratic fields containing elements of norm 1. A conjectural density is derived from a single heuristic assumption, and experimental data supporting this assumption are given. We finally discuss how close one ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 2000
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000007364